MARINESHELF RECENT

MARINESHELF

STABILITY BASIC FORMULAS


S                                      SOME  BASIC FORMULAS

Area of Waterplane  =  L  x  B  x  CW
                                                  …. L  =  Length of vessel
                                                  …. B  = Breadth of vessel
                                                   ...CW  =  Co-efficient of Waterplane

Volume of Displacement  =  L  x  B  x  d  x  CB
                                                  …. d  = depth of vessel
                                                  ….CB   =   Block co-efficient
Volume (V) =  L  x  B  x  d

Displacement (W)  =  L  x  B  x  d  x  R.D
                                                ... R.D  = Relative density of water

TRANSVERSE STABILITY
Rectangular Waterplanes
BM  =  I .           where         I  =  LB3
            V                                       12
                                                …. V  = Volume of vessel

Depth of centre of buoyancy below water line:
                                                 =    1    (  d  +  V  )
                                                       3        2      A
LONGITUDINAL STABILITY
a) Rectangular Waterplanes
IL  =  L3B              and            BML  =  IL .
          12                                               V

b) Box Shapes
BML  =    L2
              12d

LIST
GG1(Horizontal)  =  w  x  d
                              W
                                              ….d   =  distance moved horizontal
                                              ….w  =  weight
                                              ….W  =  Final Displacement

GG1(Vertical)  =  w  x  d
                           W      
                                              ….d   =  distance moved vertical
                                              ….w  =  weight
                                              ….W  =  Final Displacement
TANq  =  GG1
                 GM
                                           ….GM  =  Metacentric height

TANq  =  Listing Moments
                    W  x  GM            ….GM  =  Use Fluid GM
                                                …. W    =  Final Displacement


------------o------------

DRY DOCKING

P  =  trim   x   MCTC
                 l
       ...l = Distance of COF from where vessel touches blocks first
      ...P =  Upward force acts on ship where block first touches

P  =  COT   x   MCTC
                   l                                …..In case of declivity of Dock

Virtual loss of GM = P  x  KM

                                        W

                                       
Virtual loss of GM = P  x  KM

                                   (W - P)                   if  P - force is very small


After taking the blocks (F & A):
P = Change in TMD ( cms )  x TPC           or

P = Reduction in water level x TPC

                                                ….TMD  =  True mean draft

Change in Draft (rise) (cms) =    P        …always subtract from draft

                                                  TPC


TMD = Draft Aft –  (   LCF  x  Trim  )

                                     LBP

                                                      ….subtract if vessel is by the stern
                                                      ….add if vessel is by the head


DRY DOCKING

HYDROSTATIC TABLES AND

VESSEL ‘A’ TYPE PROBLEMS


Proceed as follows :

1.      Find mean draft from the present given drafts.
2.      From this mean draft, look in tables for LCF
3.      Using that LCF,  calculate TMD
4.      From the TMD, look in tables and find
MCTC,  LCF and DISPLACEMENT
5.      Calculate now P-Force
6.      For Displacement (W) at Critical Instant, find W-P
7.      From this new  (W), look in tables for KMT
8.      Now find Virtual loss of GM and use new KMT but old Displacement (W)
9.      Find now initial GM, using the new KMT
10. Apply Virtual loss of GM in it and find the
    EFFECTIVE GM.

                        ------------o------------
 
FREE SURFACE EFFECT / MOMENT

FSE = l.b3.R.D

             12W


FSM = l.b3.R.D

               12

                                                      ….R.D = Density of liquid in tank
FSE =  FSM

              W


Corrected FSM = Tabulated FSM  x   Actual R.D

                                                           Assumed R.D


New FSM  =  Original FSM  x  1
                                                   n2

                                    ….n = number of tanks which are subdivided

------------o------------

DYNAMICAL STABILITY

Dynamical Stability  =  W  x  Area under the curve


STATICAL STABILITY



Statical Stability  =  W  x  GZ


KN CURVES

GZ = KN – KG.SINq


INCLINING EXPERIMENT

GM  =  w x d    x    Length of Plumbline

               W                  Deflection


------------o------------

RIGHTING MOMENT


SMALL ANGLES OF HEEL (UPTO 10O HEEL):

GZ  =  GM  x  SINq

LARGE ANGLES OF HEEL (WALL SIDED FORMULA):

GZ  =  SINq ( GM + 1.BM.TAN2q )
                                  2
WIND HEELING MOMENT:

Total Wind heeling moment  =  F.A.d
                                                    1000
GZ (at angle of heel)  =  F.A.d

                                       1000W


….d  =  Distance of centre of buoyancy to centre of windage area
….F  =  Steady wind force of  48.5 kg/m2

------------o------------





SIMPSON’S RULES

SIMPSON’S FIRST RULE:

         












Area  =  h  x  ( a + 4b + 2c + 4d + 2e + 4f + g )
              3

Remember  :  1 4 1


SIMPSON’S SECOND RULE:








                     1             3                3            1



                              
                       h               h               h

Area  =  3    x   h   x   sum of products
              8

Remember  :  1 3 3 1

SIMPSON’S THIRD RULE:
                      5                8              –1




















                         
                         h                h

Area  =   h   x   ( 5a + 8b – c )
              12

Remember  :  5   8  –1

NB:
Divide  the value of  ‘ h (in degrees) ’  by  ‘ 57.3 ’  while calculating the area.

NB:
In the 3rd  rule of Simpson, we are only looking for a particular piece between the area i.e., from one co-ordinate to other and this is mainly used by surveyors for calculating sludge in bunker tank etc. Also for knowing the full area, we use Simpson’s first rule.

GM CONDITIONS

GM AT LOLL:

GM  =  2(Initial GM)

                   COSq             ….answer will be –ive but write +ive sign


WHEN GM IS NEGATIVE:


WHEN GM IS NIL:


------------o------------

TURNING CIRCLE

TAN(Heel)  =  v2BG
                         gGMr
                                              ….v = velocity of ship(m/s)
                                              ….r = radius of turning circle
                                              ….g = Acceleration due to Gravity

                                                                                     (9.81 m/s)
                                             ….T = Period of Rolls (seconds)
                                             ….K = Radius of Gyration

                                             ….p = 3.142857143 (constant)
                                             ….I = Weight Moment of Inertia about
                                                        Rolling axis (tonne - metres2)
Hence we get,


Actual New Draft  = [ Initial draft + B Tanq ] Cosq
                                                   2
------------o------------
AIR DRAFT

CALCULATING LENGTH OF THE IMMAGINARY MAST
WHICH IS EXACTLY ABOVE THE ‘CF’:

Correction to Aft Mast

Dist. of center mast from Aft Mast  x  Diff. of ht between masts

         Dist. between the two masts


                                   ….subtract this value from the ht of Aft mast
or

Correction to Fwd Mast

Dist. of center mast from Fwd Mast  x  Diff. of ht between masts

          Dist. between the two masts


                                   ….add this value from the ht of Fwd mast

FOR FINDING DRAFT FWD AND AFT

   Trim between masts      =  Trim of vessel
Distance between masts             LBP

…..(from this, calculate ‘trim of vessel’ and proceed as follows)

Trim Effect Aft  =  la  x  Trim
                                          L

Trim Effect Fwd  =  lf  x  Trim
                                           L

GRAIN

Weight of Grain  =  Volume

                                    S.F


Weight of H.M   =  Volumetric H.M

                                         S.F


Approx. Angle of heel  =  Total H.M   x  12o

                                           Max.H.M


…. Max.H.M can be found in the Tables of Maximum permissible
      Grain heeling moment against ‘W’ and KG

GG1 ( lo)  =  w  x  d
                          W
                            ….w = weight of Grain liable to shift while rolling
                            ….d = horizontal distance of Grain shift

lo  =  Total volumetric H.M (in m4)
                         S.F  x  W

l40  =  GG1(lo)  x  0.80            ….80%  of   lo (GG1)

NB:
If value for cargo is given for centroid then follow as normal
but if value given for ‘Kg’ of cargo then,

Multiply H.M value for fully filled compartment by 1.06 and
Multiply H.M value for partially filled compartment by 1.12

TRIM
HYDROSTATIC TABLES AND

VESSEL ‘A’ TYPE PROBLEMS


Proceed as follows :

1.    Find mean draft from the present given drafts.
2.    From this mean draft, look in tables for LCF
3.    Using that LCF,  calculate TMD
4.    From the TMD, look in tables and find
    MCTC,  LCB and DISPLACEMENT
5.    Calculate now INITIAL LCG
6.    Now Calculate FINAL ‘W’ and FINAL LCG by MOMENTS
7.    With this FINAL ‘W’, go in tables and look find TMD, LCB, LCF and MCTC
8.    Calculate TRIM
9.    After this calculate TRIM EFFECTS ( F & A )
10.           Now apply this TRIM EFFECT to find FINAL DRAFTS.

------------o------------

TRIM

Trimming Moment  =  w  x  d                 ( d = distance from COF )

Area of Waterplane  =  L  x  B  x  Cw

Volume of Displacement  =  L  x  B  x  D  x  CB

TPCsw   =   1.025A
                     100

FWA  =      W    .

               40 TPC


DWA  =  FWA (1.025 – R.D)
                          0.025

MCTC  =  WGML

                  100L


TPCDW   =   R.D   x  TPCSW
                 1.025

MCTCDW   =   R.D   x  MCTCSW
                     1.025

Displacement(DW)   =   RD    x   Displacement(sw)
                                   1.025

Sinkage (cms)  =      w  .

                               TPC






COT  =  Trimming Moments

                       MCTC


COD Aft   =   la  x  COT

                       L


COD Fwd  =  COT – COD Aft

WHEN THE VESSEL IS EVEN KEEL

 

LCG  =  LCB


FOR A BOXED SHAPED VESSEL

BM   =    B2
              12d

KB   =    draft
                 2

FOR A BOX SHAPED VESSEL WHEN DISPLACEMENT CONSTANT

New Draft   =   Old Density

Old Draft          New Density


FOR A SHIP SHAPED VESSEL WHEN DRAFT CONSTANT

New Displacement   =   New Density

Old  Displacement         Old Density


TO KEEP THE AFT DRAFT CONSTANT

d  =  L  x  MCTC
          la  x  TPC                          ….keeping the aft draft constant

d  =  L  x  MCTC
          lf  x  TPC                          ….keeping the fwd draft constant

d  =  Distance from the CF
la  =  Distance from the AP
lf  =  Distance from the FP

TO PRODUCE A REQUIRED TRIM

Change in Draft (cms)  =  (  l.   x   w x d   ) ±    w  .

                                             L        MCTC        TPC

( - ive for Draft Aft)
( + ive for Draft Fwd)
( la for aft and lf for fwd)

Trim (cms)  =  W (LCB  -  LCG)

                                 MCTC


(Values for LCB, LCG and MCTC should be final)
COT WITH CHANGE OF DENSITY

COT  =  W(RD1 – RD2)(LCF – LCB)
                        RD1  x  MCTC2

LCGINITIAL =  LCB ±Trim (cms)   x  MCTC  )
                                                      W
                                                                    ….( -  ive for stern trim )
                                                                    ….( +  ive for head trim )

TRIM EFFECT AFT  =  la  x  Trim
                                        L

TRIM EFFECT FWD  =  lf  x  Trim
                                         L

------------o------------

BILGING


WHEN HEIGHT OF COMPARTMENT IS GIVEN AND ABOVE WATER LEVEL
CALCULATE SINKAGE BY RECOVERABLE BUOYANCY METHOD:







Sinkage  =  Buoyancy still to be recover
                                 L  x  B

Buoyancy still to be recover  =  Lost buoyancy – Recoverable
                                                                                         Buoyancy
Volume of Lost Buoyancy  =  l  x  b  x  draft

Recoverable Buoyancy  =  ( L – l ) x  B  x  ( Depth – Draft )

To find the Final Draft, add the Sinkage to Tank’s height


WHEN IN QUESTION PERMEABILITY OF THE CARGO IS GIVEN
CALCULATE THE EFFECTIVE LENGTH OF THE TANK:

Permeability ( m )  =  Broken Stowage
                                   Stowage Factor

Broken Stowage  = Actual Stowage – Solid Stowage

Solid Stowage  =                 1               .
                              R.D of liquid in tank

Effective Length  =  Tank’s length ORIGINAL  x Permeability ( m )

NB
After calculating ‘Effective length’ always use this length for tank’s length.

------------o------------
BILGING

MIDSHIP COMPARTMENT

                 
     NON WATER TIGHT                       WATER TIGHT
        

Sinkage  =      v   .
                   A -  a               …If   NON WATER TIGHT

Sinkage  =  v .
                   A                      …If   WATER TIGHT

BM  =  LB3
            12V                         …If   WATER TIGHT

BM  =  (L – l)B3
                12V                     …If   NON WATER TIGHT



BILGING

SIDE COMPARTMENT






                         PLAN VIEW OF A SHIP

Sinkage  =      v   .
                   A -  a               …If   NON WATER TIGHT

Sinkage  =  v . 
                   A                      …If   WATER TIGHT

TANq   =  BB1
                  GM             ….q  =  List

BB1  =  a  x  d
             Final A             ….d  =  Distance from center of tank to
                                                                               ship’s center line
                                       ….Final A  =  A -  a
BM  =  IOZ
             V

IOZ  =  IAB  - Ad2              ….d  =  B + BB1
                                                   2
                                      ….A  =  A - a
IAB  =  LB3  -  lb3
3                           3
BILGING




END COMPARTMENT


   AFT COMP. BILGED                   FWD COMP. BILGED
   NON WATER TIGHT                   NON WATER TIGHT

Sinkage  =      v   .
                   A -  a               …If   NON WATER TIGHT

Sinkage  =  v .  
                   A                      …If   WATER TIGHT

If ‘KG’ is not given, then GML  =  BML

BM  =  L3B
            12V                         …If   WATER TIGHT

BM  =  (L – l)3B
                12V                     …If   NON WATER TIGHT

COT  =  w  x  d
              MCTC                  ….w  =  l x b x dft x R.D
                                            ….d  =  L   ..(Non water tight case)
                                                         2
                                            ….d = tank’s center to CF
                                                               ..(Water tight case)


MCTC  =  WGML

                  100L


COD Aft   =   la  x  COT

                       L                              ….la  =  ( L - l )  +  tank’s length

                                                                           2
(For measuring the CF from AP)                   ..(Non water tight case)

 

                                                      …. la  =  L

                                                                     2
(CF hasn’t changed and is amidships)           ..(Water tight case)

When Fwd compartment is bilged (and non water tight), then just use

                                                      ….la  =  ( L - l )

                                                                         2
(Again for measuring the CF from AP)         ..(Non water tight case)

IN CASE OF WATER TIGHT COMPARTMENT BELOW WATER LINE AND BELOW THE TANK THERE IS AN EMPTY COMPARTMENT




a)    Deal as normal water tight case
b)   Use volume of the tank only which is filled with water but not the portion beneath it.
c)    But for KB of tank, use from K to center of  tank

NB
IN WATER TIGHT CASE
·       BM remains the same before and after
·       KB is different before and after bilging
            KB1 is half of Original Draft
            KB2 is found by moments

IN NON WATER TIGHT CASE
·       BM is different before and after bilging
     BM1 is  LB3                 and                BM is    (L - l)B3
                  12V                                               12V

·       KB is different before and after bilging
            KB1 is half of Initial Draft
            KB2 is half of New Draft


PLEASE NOTE THE FOLLOWING CONDITIONS






  WATER TIGHT CASE              NON WATER TIGHT CASE
Calculate:
a) Sinkage by non w/t method
                                                       b) KB2 by Moments

NB:
In all cases of WATER TIGHT COMPARTMENT, calculate KB by the MOMENTS METHOD& use ‘New Draft’ in calculating this KB when calculating volume.


------------o------------

TANKER CALCULATIONS

TOTAL OBSERVED VOLUME (T.O.V.):
The Total Observed Volume of all Petroleum Liquids and Free Water at observed temperature.

GROSS OBSERVED VOLUME (G.O.V.):
The Total Volume of all Petroleum Liquids, excluding Free Water at observed temperature.

G.O.V.   =   T.O.V.  -  Vfw     (at observed temperature) 

GROSS STANDARD VOLUME (G.S.V.):
The Total Volume of all Petroleum Liquids, excluding Free Water, corrected by appropriate Volume Correction Factor for the observed temperature and API Gravity 60º F, Relative Density 60º F / 60º F or Density 15º C.

G.S.V.   =   G.O.V.   X   V.C.F.

FREE WATER (Vfw):
The volume of water present in a tank which is not in suspension in the contained liquid at observed temperature.

ONBOARD QUANTITY (O.B.Q):
Quantity of water, oil, slops, residue, sludge or sediment, remaining in the tanks prior to loading.

TOTAL CALCULATED VOLUME (T.C.V.):
It is the Gross Standard Volume plus Free Water.

T.C.V.   =   G.S.V.  + Vfw

TOTAL RECEIVED VOLUME (T.R.V.):
Is equal to the Total calculated Volume minus O.B.Q.
Weight Correction Factor (W.C.F.) is applied to this Volume to obtain Weight in Metric Tons or Long Tons.
Shore Gross B/L figure is to be compared with this figure.
Whenever Free Water is found in Cargo:

T.R.V.   =   T.C.V.  -  O.B.Q.

LOADED OIL WEIGHT:
Is equal to the Gross Standard Volume minus O.B.Q.
Weight Correction Factor is applied to this Volume to obtain weight in Metric Tons or Long Tons.
Shore Gross B/L figure is to be compared with this figure when no Free Water is found in Cargo.

LOADED OIL WEIGHT   = (G.S.V.  -  O.B.Q.)  W.C.F.

VESSEL’S EXPERIENCE FACTOR (V.E.F.):
Is equal to the Total of Gross B/L figures divided by the Total of Ship’s figures over the last 10 voyages.

For the purpose of calculating V.E.F., 10 TO 20 Voyages may be taken. However all voyages must ‘qualify’. A minimum of 5 ‘qualified’ voyages is needed for some level of V.E.F.

The defination of a “qualified voyage is one that meets the following criteria:
·         Any voyage that is within +/- 0.0030 of then average ratio of all voyages listed. (eg.  If the average listed is 1.00105, then all voyages within the range 0.99805 through 1.00405 would qualify)
·         Excludes all voyage prior to any structural modification which affected the vessel’s cargo capacity.
·         Excludes load or discharge data where shore measurements were not available.

This Factor is not to be applied to ship’s figure for assessing Ship / Shore difference.

The Factor may be applied to Ship’s figure to obtain an approximate B/L figure, only as a counter check where:

SHIP’S FIGURE   X   V.E.F   = APPROXIMATE B/L FIGURE.

TABLES, VOLUME AND DENSITY:
API   =   AMERICAN PETROLEUM INDEX

ASTM   =   AMERICAN STANDARD OF TESTING MATERIALS

Previously there were 3 versions of ASTM Tables:
·         USA Version  -  Giving API at 60º F
·         UK Version    -  Giving Specific Gravity at 60º / 60º F (Ratio of density of Oil at 60º F to density of Water at 60º F   = Specific Gravity)
·         Metric Version   -  Giving Density at 15º C  (eg. 0.865 kg/m3)

IN PRACTICE:
Volume at observed temperature is calculated by taking ullages.

Density at 15º C is given by Shore authorities.

Now Volume at 15º C   =   Volume at observed temperature  X  V.C.F.

And Volume at 15º C  X Density at 15º C   =   Weight at 15º C   (IN VACUUM)

But we want Weight IN AIR, therefore we apply the W.C.F.

W.C.F.   =   DENSITY AT 15º C  -  0.0011

NOTES:
Now all 3 Versions are combined together and made into total 14 Volumes which contain all calculations regarding CRUDE, LUBE OIL, DIESEL OIL and all kinds of fluids / liquids.
A particular ship may have selected Volumes only, for the trade on which she is being run.

HYDROMETER  -  TO MEASEURE DENSITY OF WATER
PICNOMETER   -  TO MEASURE DENSITY OF ANY LIQUID OTHER THAN WATER

SOLVED NUMERICALS:

1.        Volume at observed temperature  =  10000 m3
Density at 15º C.  Use observed temperature  =  VCF
Volume at 15º C  = 9000 m3    (Volume at observed temperature  X  VCF)
Therefore Weight in Vacuum  = 9000  X  0.8  = 7200
Density at 15º C  -  0.0011  =  WCF 
0.8    -  0.0011  = 0.7989
       Therefore W  =  Volume at 15º C  X 0.7989

OBQ  =  ON Board Quantity
ROB  =  Remaining On Board

TOV  =  Vo  +  Vfw at observed temperature
GOV  = TOV  -  Vfw
GSV  =  GOV  x  VCF
TCV  =  GSV  +  Vfw
TRV  =  TCV  -  obq

TRU  x  WCF  is the figure used to compare B/L figure.
(GSV – OBQ) x WCF  = Weight of Oil Loaded

API at 60º F  =   141.5               -   131.5   
                           SG 60º / 60º F

API  10 is for fresh water.
Higher the API, the lighter the product

1m3  =  6.28981 barrels

6A      A  -  stands for Crude Oil
6B      B  -  stands for Product Oil


2.        On commencement of discharge of No. 3 © tank at 1324, EK draft of 9.00 m, ullage  of 0.20 m with waterdip 15 cm.
On completion of bulk discharge at 1800, sounding of 3 © was 20 cm.
The tank is box shaped with dimensions L = 14, B = 12, D = 10, density at 15º C = 0.8937
Average Cargo temperature  =  26.0º C.  Find the rate of discharge.

TOV  = 14 x 12 x 9.8     =   1646.4 m3
Vfw   = 14 x 12 x 0.15   =       25.2 m3
GOV = 1646.4 – 25.2    =    1621.2 m3
GSV =  GOV x VCF     =    1608.026 m3

By Interpolation:
                     0.8937
           0.890             0.895                          
26º C  0.9918           0.9919
therefore VCF  =  0.991874

WCF  =  0.8937  -  0.0011  =  0.8926

Therefore Weight of oil on arrival  =  1608.026  x  0.8926  =  1435.324 Tons
Volume ROB  (0.2 x 14 x 12) x VCF x WCF                      =  29.747 Tons

Therefore Rate of Discharge in MT  = (1435.324  -  29.747)
                                                                         TIME


WEDGE FORMULA:
It is applicable to Center Tanks only and when the ship is upright and trimmed.












Refer to Figure 1.
Let Breadth of the tank  = ‘b’,  trim  = 0º,  dist. of ullage port from aft b/head  = ‘d’,  height of the tank  = ‘h’.

In triangle DGB, angle DGB = 90º
DB  = DG Cosec 0     [ DG = Sounding = Pm = Pmiddle ]
       = Pm Cosec 0
EC  = Dist of ullage port from aft b/head = d
Now,  BE  =  EC + BD – CD
Therefore BE  =  (d + Pm Cosec 0 – h Tan 0) ………………………. (A)

BE is  < / =  AE        [Wedge is formed]
EF  =  BE Tan 0
      =  (d + Pm Cosec 0  - h Tan 0)  x  Tan 0
Therefore Volume of Wedge  =  [1/2 x BE x EF] x b
Vwedge  = [1/2 x BE x P] x b                                                               (B)

Now, Trim = 0
Therefore Tan 0  =  Trim    =  T ………….(1)
                                Length     L

Also from Figure 1
Tan 0  = EF                                                  (2)
              BE

Comparing (1) and (2)
T    =    EF
L          BE

Therefore BE  = EF x L    =   P x L ………(3)        
                               T                 T

Putting value of BE (3) in (B),

Vwedge  = ½ x (P x L) x P x b
                              T

Vwedge  = L x b x P2                   Where P = EF = Ht. Of liquid at aft b/head
                        2T                          T = Trim
See Figure 2. below






IN CASE WHEN TRAPEZIUM IS FORMED INSTEAD OF WEDGE














Refer to Figure 3 as above.
Corrected Sounding (P)  = {Obs. Sounding (P’) + [d – (h – T/L)] x T/L}

Area of Trapezium   = [ (Pmax + z) + z] x l  = [ 2P – Pmax] x l
1          2

Where P  = Corrected sounding at aft b/head
           P’ = Sounding observed from ullage port
          d   = Dist of ullage port from aft b/head
          h   = Height of the tank
         T   = Trim,  L = Length of the ship,  l = Length of the tank,  b = Breadth of the tank

Pmax  Max EF due to wedge

Pmax  = T/L x l ………………………………….(1)

Pcorr. sdg  =  P’ + [ d – (h x T/L) ] x T/L ……….(2)      

If (1)  <  (2)      ie.   Pmax  < Pcorr. sdg

The instead of wedge, a trapezium is formed of volume…

Volume  =  [ Pmax + 2z ] x l x b
                            2

MORE NUMERICALS:

1.      Given tank ullage  = 37 cm
Observed temperature of Cargo  =  19.3º C
Density of Cargo in Vacuum at 15º C  = 0.857 t/m3
Water Content  =  165 m3
Calculate amount of Cargo in the tank in MT.
TOV   =  3014.9  m3 at 19.3º C
GOV  =  TOV  -  Vfw
GOV  =  3041.9 – 165  =  2876.9 m3
GSV  =  2876.9  x  VCF
         =  2876.9  x  0.9966
         =  2867.1185 m3

WCF  =  0.8570 – 0.0011  = 0.8559

Therefore amount of Cargo in MT  = 2867.1185  x  0.8559
                                                         = 2453.967 MT


2.   LBP  =  150 M,   Trim  =  1.30 m
      P’  =  58 cm  =  0.58 m
      d  =  1.500 m,      l  =  12,       b  =  15,        h  =  19
      R.D.  =  0.89

      Pmax  =  T/L x l    =   1.3/150  x  12  =  0.104 m

      Pcorr.sdg  =  P’ + [ d – (h x T/L) ] x T/L
                       =  0.58 + [ 1.5 – (19 x 1.3/150) ] x 1.3/150  =  0.592 m

      Since Pmax < Pcorr.sgd,      therefore a trapezoid if formed.

      Area of Trapezium ABCF,
      = ( 0.592 + 0.488 ) x 12    =  6.48 m2
                      2

       Volume of the trapezoid  =  6.48 x 15

       Therefore amount of Oil in the tank  =  6.48 x 15 x 0.89   =   86.508 MT


2.      The vessel is on even keel
(A)  Ullage  = 0.43 m,   Water dip  = 0.12 m
Density at 15º C   =   0.8572
Observed temperature  =  33.5º C

For ullage 0.43 m,
Tov  =  1955.0 m3
Vfw  =  14.8 m3

Therefore GOV  =  TOV – Vfw  = 1940.2 m3
VCF  =  0.985388
GSV  =  GOV x VCF  = 1940.2 x 0.985388   =   1911.8498

WCF  =  0.8572 – 0.0011  =  0.8561

Therefore the amount of Cargo  =  1911.8498 x 0.8561

(B)    At the end of discharge,
      Ullage  =  10.3 m,   Sdg  =  0.20 m  =  P’
      Trim  = 2 m,    l x b x h  =  20 x 8 x 10.5
      d  = 1.000 m,   LBP  = 150

      Pmax  =  T/L x l  = 2/150 x 20   =   0.266

      Pcorr.sdg  =  P’ + [ d – (h x T/L) ] x T/L
                       =  0.20 + [ 1.0 – (10.5 x 2/150) ] x 2/150    =    0.21466

      Since Pmax > Pcorr. sdg,   therefore a wed ge is formed

      P  = BE Tan 0   =   [ d + Pm Cosec 0 – h Tan 0 ] x Tan 0.

      (Tan 0 = 2/150.   Therefore 0  = 0.1458.    Cosec 0  = 81.404 )

      P   =   [ 1.0 + 0.2Cosec 0 – 10.5 x 2/150] x 2/150
      =   [ 1.0 + 0.2 x 81.404 – 10.5 x 2/ 150 ] x 2/150   =   0.22854

      Volume of wedge   =   L x b x P2    =    150 x 8 x (0.228544 x 0.228544)
                                                 2T                                    2 x 2

      Therefore Volume of wedge   =   15.6697 m3

3.   l x b x h   = 40 x 20 x 20 m3
      Ullage of oil  = 1.24 m     Trim  =  3 m
      Height of ullage point  = 1.10 m      LBP  =  200 m
      Depth of free space above oil  = 0.14 m        d  =  1.6 m
      Depth of oil  = P’  =  19.86 m
      Water dip  =  21.1 – 20.94  =  0.61 m

Pmax  =  T/L x l  = 3/20 x 40  = 0.60 m

Pcorr.sdg  =  { [P’]  +  [ (d – h x T/L) ] x T/L }
                 =  [ 19.86 + ( 1.6 – 20 x 3 / 200) x 3 / 200 ]   =   19.8795

Since Pmax < Pcorr.sdg,  a trapezium is formed.

Volume of trapezium   = ( 19.2795 – 19.8795)  x  40 x 20   =   15663.8 m3
                                                         2
Now considering the water dip,
Pmax   =  EF /AE  =  T/L
Pmax   =  3/200 x 40  = 0.60 m

Present P’  = ( d + Pm Cosec 0 – h Tan 0) x Tan 0
                  = ( 1.6 + 0.16 x 66.901 – 20 x 0.015 ) x 0.015   = 0.180 m

Since Pmax > P a wedge is formed

Volume of wedge EBF   =   L x b x P2/ 2T   =   200 x 20 x 0.18 x 0.18/ 2 x 3   = 21.6 m3

TOV   =   15663.8 m3
Vfw    =         21.6 m3
GOV  =    15642.2 m3
VCF   =      x  0.980784
GSV   =    15341.619 m3
WCF  =      x  0.8135

Therefore amount of oil in Tonnes   =   12480.407  MT  
                                                       








8 comments:

Unknown said...

I need some help with some ship stability questions, can anyone please help me?
regards

Capt. Marc said...

I'm working on a vessel stability article now at WetBoating.com It's a long way from being finished, but I am trying to put vessel stability into easy to understand terms. Capt. Marc

Job G said...

i need help with pontoons stability at large angles of heel. Can you recommend a book o a file in which i can find an analitycal method to calculate it?

Unknown said...

Thank you for sharing valuable information. Library Cupboard Furniture | Student Desk

Unknown said...

GOOD DAY SIR I NEED HELP! .HOW TO SOLVE GGO AND WHAT IS THE MEANING OF GGO

Unknown said...

god day sir,
how to solve GGo sir
what is the meaning of ggo sir

Unknown said...

refer to the stability booklet and determine which tanks cause relatively more free surface effect if kept slack...kindly help me with an example

pavel said...

We have a reliable tank storage and vessel Available at the port of Rotterdam,
port of Novorossiysk Russia and port of Houston USA. for lease urgently with strong focus on safety,
sustainability, reliability and customer service. Capacity: 3,926,249 cbm Tanks: 99 Tank size:
From 2,000 to 100,000 cbm Access: Barge, Pipeline, Vessel Draught: 21 meter Berths for barges:
15 Berths for vessels: 7 Products: Crude oil, aviation kerosene diesel oil, Petroleum products Services:
Blending, Heating, tank storage leasing & logistics, Dedicated systems, Additives. Terminal type: Hub, Import/Export/Distribution,
Industrial/Co Siting Division: BP Europe, Russia & United States. Ownership: 100.00% For TSA.
and all commercial inquiries, on leasing or sub-leasing, please contact Russia office via:+79167856894 on WhatsApp, Now let me know on
paveleriks@mail.ru that you sent or call us via those contact to secure your conversation!!