MARINESHELF RECENT

MARINESHELF

Monday, March 18, 2013

MARINESHELF publishes articles contributed by seafarers and other marine related sites solely for the benefit of seafarers .All copyright materials are owned by its respective authors or publishers.

 Components of GMDSS

The main types of equipment used in GMDSS are:

Emergency Position-Indicating Radio Beacon (EPIRB)

Cospas-Sarsat is an international satellite-based search and rescue system, established by Canada, France, the United States, and Russia. These four countries jointly helped develop the 406 MHz Emergency Position-Indicating Radio Beacon (EPIRB), an element of the GMDSS designed to operate with Cospas-Sarsat system. These automatic-activating EPIRBs, now required on SOLAS ships, commercial fishing vessels, and all passenger ships, are designed to transmit to a rescue coordination center a vessel identification and an accurate location of the vessel from anywhere in the world. Newest designs incorporate GPS receivers to transmit highly accurate positions of distress.

 NAVTEX

Main article: Navtex
Navtex is an international, automated system for instantly distributing maritime navigational warnings, weather forecasts and warnings, search and rescue notices and similar information to ships. A small, low-cost and self-contained "smart" printing radio receiver installed in the pilot house of a ship or boat checks each incoming message to see if it has been received during an earlier transmission, or if it is of a category of no interest to the ship's master. The frequency of transmission of these messages is 518 kHz in English, while 490 kHz is use to broadcast in local language.
The messages are coded with a header code identified by the using alphabets to represent broadcasting stations, type of messages, and followed by two figures indicating the serial number of the message.

 Inmarsat

Satellite systems operated by the Inmarsat, under contract to the International Mobile Satellite Organization (IMSO), are also important elements of the GMDSS. Four types of Inmarsat ship earth station terminals are recognized by the GMDSS: the Inmarsat A, B, C and F77. The Inmarsat B and F77, an updated version of the A, provide ship/shore, ship/ship and shore/ship telephone, telex and high-speed data services, including a distress priority telephone and telex service to and from rescue coordination centers. The F77 is meant to be used with the Inmarsat C, since its data capability does not meet GMDSS requirements. The Inmarsat C provides ship/shore, shore/ship and ship/ship store-and-forward data and email messaging, the capability for sending preformatted distress messages to a rescue coordination center, and the Inmarsat C SafetyNET service. The Inmarsat C SafetyNET service is a satellite-based worldwide maritime safety information broadcast service of high seas weather warnings, NAVAREA navigational warnings, radionavigation warnings, ice reports and warnings generated by the USCG-conducted International Ice Patrol, and other similar information not provided by NAVTEX. SafetyNET works similarly to NAVTEX in areas outside NAVTEX coverage.
Inmarsat C equipment is relatively small and lightweight, and costs much less than an Inmarsat A, B or F77. Inmarsat A, B and F77 ship earth stations require relatively large gyro-stabilized antennas; the antenna size of the Inmarsat C is much smaller. Inmarsat also operates an EPIRB system, the Inmarsat L, which is similar to that operated by COSPAS-SARSAT. The INMARSAT L (also called INMARSAT E) EPIRB system is terminated by November 30th, 2006. The INMARSAT EPIRBs are replaced by COSPAS-SARSAT EPIRBs with built-in GPS. Immediate alerting is possible through the GEOSAR satellites of the COSPAS-SARSAT system.
In July 2002 IMSO notified IMO of the decision by Inmarsat to withdraw provision of Inmarsat A services as from 31 December 2007. On that date, Inmarsat A can no longer be used for any purpose. The last type approval by Inmarsat for a new model of maritime Inmarsat A mobile earth station was granted in 1991, since then no new Inmarsat A models have been approved.
Under a cooperative agreement with the National Oceanic and Atmospheric Administration (NOAA), combined meteorological observations and AMVER reports can now be sent to both the USCG AMVER Center, and NOAA, using an Inmarsat C ship earth station, at no charge. .
SOLAS now requires that Inmarsat C equipment have an integral satellite navigation receiver, or be externally connected to a satellite navigation receiver. That connection will ensure accurate location information to be sent to a rescue coordination center if a distress alert is ever transmitted.

 High Frequency

The GMDSS includes High Frequency (HF) radiotelephone and radiotelex (narrow-band direct printing) equipment, with calls initiated by digital selective calling (DSC). Worldwide broadcasts of maritime safety information are also made on HF narrow-band direct printing channels.

 Search and Rescue Transponder

The GMDSS installation on ships include one or more Search and Rescue Transponder (SART) devices which are used to locate survival craft or distressed vessels by creating a series of dots on a rescuing ship's 3 cm radar display. The detection range between these devices and ships, dependent upon the height of the ship's radar mast and the height of the SART, is normally about 15 km (8 nautical miles). Note that a marine radar may not detect a SART even within this distance, if the radar settings are not optimized for SART detection.
On detected by a radar, the SART will produce a visual and aural indication.

 Digital Selective Calling

The IMO also introduced Digital Selective Calling (DSC) on MF, HF and VHF maritime radios as part of the GMDSS system. DSC is primarily intended to initiate ship-to-ship, ship-to-shore and shore-to-ship radiotelephone and MF/HF radiotelex calls. DSC calls can also be made to individual stations, groups of stations, or "all stations" in one's reach. Each DSC-equipped ship, shore station and group is assigned a unique 9-digit Maritime Mobile Service Identity.
DSC distress alerts, which consist of a preformatted distress message, are used to initiate emergency communications with ships and rescue coordination centers. DSC was intended to eliminate the need for persons on a ship's bridge or on shore to continuously guard radio receivers on voice radio channels, including VHF channel 16 (156.8 MHz) and 2182 kHz now used for distress, safety and calling. A listening watch aboard GMDSS-equipped ships on 2182 kHz ended on February 1, 1999. In May 2002, IMO decided to postpone cessation of a VHF listening watch aboard ships. That watchkeeping requirement had been scheduled to end on 1 February 2005.
IMO and ITU both require that the DSC-equipped MF/HF and VHF radios be externally connected to a satellite navigation receiver. That connection will ensure accurate location information is sent to a rescue coordination center if a distress alert is ever transmitted. The FCC requires that all new VHF and MF/HF maritime radiotelephones type accepted after June 1999 have at least a basic DSC capability.
VHF digital selective calling also has other capabilities beyond those required for the GMDSS. The Coast Guard uses this system to track vessels in Prince William Sound, Alaska, Vessel Traffic Service. IMO and the USCG also plan to require ships carry a Universal Shipborne Automatic Identification System, which will be DSC-compatible. Countries having a GMDSS A1 Area should be able to identify and track AIS-equipped vessels in its waters without any additional radio equipment. A DSC-equipped radio cannot be interrogated and tracked unless that option was included by the manufacturer, and unless the user configures it to allow tracking.
GMDSS telecommunications equipment should not be reserved for emergency use only. The International Maritime Organization encourages mariners to use that equipment for routine as well as safety telecommunications.

 GMDSS Sea Areas

GMDSS sea areas serve two purposes: to describe areas where GMDSS services are available, and to define what GMDSS ships must carry. Prior to the GMDSS, the number and type of radio safety equipment ships had to carry depended upon its tonnage. With GMDSS, the number and type of radio safety equipment ships have to carry depend upon the areas in which they travel. GMDSS sea areas are defined by governments.
In addition to equipment listed below, all GMDSS-regulated ships must carry a satellite EPIRB, a NAVTEX receiver (if they travel in any areas served by NAVTEX), an Inmarsat-C SafetyNET receiver (if they travel in any areas not served by NAVTEX), a DSC-equipped VHF radiotelephone, two or more VHF handhelds, and a search and rescue radar transponder (SART).

 Sea Area A1

An area within the radiotelephone coverage of at least one VHF coast station in which continuous digital selective calling (Ch.70/156.525Mc.) alerting and radiotelephony services are available.Such an area could extend typically 20 nautical miles (37 km) to 30 nautical miles (56 km) from the Coast Station.

Sea Area A2

An area, excluding Sea Area A1, within the radiotelephone coverage of at least one MF coast station in which continuous DSC (2187.5 kHz) alerting and radiotelephony services are available.For planning purposes this area typically extends to up to 100 nautical miles (190 km) offshore,but would exclude any A1 designated areas.In practice,satisfactory coverage may often be achieved out to around 400 nautical miles (740 km) offshore.

 Sea Area A3

An area, excluding sea areas A1 and A2, within the coverage of an INMARSAT geostationary satellite in which continuous alerting is available.This area lies between about latitude 76 Degree NORTH and SOUTH,but excludes A1 and/or A2 designated areas.

 Sea Area A4

An area outside Sea Areas A1, A2 and A3 is called Sea Area A4. This is essentially the polar regions, north and south of about 76 degrees of latitude, excluding any other areas.

 GMDSS Radio Equipment Required for U.S. Coastal Voyages

Presently, until an A1 or A2 Sea Area is established, GMDSS-mandated ships operating off the U.S. coast must fit to Sea Areas A3 (or A4) regardless of where they operate. U.S. ships whose voyage allows them to always remain within VHF channel 16 coverage of U.S. Coast Guard stations may apply to the Federal Communications Commission for an individual waiver to fit to Sea Area A1 requirements. Similarly, those who remain within 2182 kHz coverage of U.S. Coast Guard stations may apply for a waiver to fit to Sea Area A2 requirements.

 History

Since the invention of radio at the end of the 19th century, ships at sea have relied on Morse code, invented by Samuel Morse and first used in 1844, for distress and safety telecommunications. The need for ship and coast radio stations to have and use radiotelegraph equipment, and to listen to a common radio frequency for Morse encoded distress calls, was recognized after the sinking of the liner RMS Titanic in the North Atlantic in 1912. The U.S. Congress enacted legislation soon after, requiring U.S. ships to use Morse code radiotelegraph equipment for distress calls. The International Telecommunications Union (ITU), now a United Nations agency, followed suit for ships of all nations. Morse encoded distress calling has saved thousands of lives since its inception almost a century ago, but its use requires skilled radio operators spending many hours listening to the radio distress frequency. Its range on the medium frequency (MF) distress band (500 kHz) is limited, and the amount of traffic Morse signals can carry is also limited.
Not all ship-to-shore radio communications were short range. Some radio stations provided long-range radiotelephony services, such as radio telegrams and radio telex calls, on the HF bands (3-30 MHz) enabling worldwide communications with ships. For example, Portishead Radio, which was the world's busiest radiotelephony station, provided HF long-range, MF medium-range, and VHF short-range services; in 1974, it had 154 radio operators who handled over 20 million words per year. Such large radiotelephony stations employed large numbers of people and were expensive to operate. By the end of the 1980s, satellite services had started to take an increasingly large share of the market for ship-to-shore communications.
For these reasons, the International Maritime Organization (IMO), a United Nations agency specializing in safety of shipping and preventing ships from polluting the seas, began looking at ways of improving maritime distress and safety communications. In 1979, a group of experts drafted the International Convention on Maritime Search and Rescue, which called for development of a global search and rescue plan. This group also passed a resolution calling for development by IMO of a Global Maritime Distress and Safety System (GMDSS) to provide the communication support needed to implement the search and rescue plan. This new system, which the world's maritime nations are implementing, is based upon a combination of satellite and terrestrial radio services, and has changed international distress communications from being primarily ship-to-ship based to ship-to-shore (Rescue Coordination Center) based. It spelled the end of Morse code communications for all but a few users, such as amateur radio operators. The GMDSS provides for automatic distress alerting and locating in cases where a radio operator doesn't have time to send an SOS or MAYDAY call, and, for the first time, requires ships to receive broadcasts of maritime safety information which could prevent a distress from happening in the first place. In 1988, IMO amended the Safety of Life at Sea (SOLAS) Convention, requiring ships subject to it fit GMDSS equipment. Such ships were required to carry NAVTEX and satellite EPIRBs by 1 August 1993, and had to fit all other GMDSS equipment by 1 February 1999. US ships were allowed to fit GMDSS in lieu of Morse telegraphy equipment by the Telecommunications Act of 1996.

 Licensing of Operators

In the United States four different certificates are issued. A GMDSS Radio Maintainer's License allows a person to maintain, install,and repair GMDSS equipment at sea. A GMDSS Radio Operator's License is necessary for a person to use required GMDSS equipment. The holder of both certificates can be issued one GMDSS Radio Operator/Maintainer License. Finally, the GMDSS Restricted License is available for VHF operations only within 20 nautical miles (37 km) of the coast. To obtain any of these licenses a person must be a U.S. citizen or otherwise eligible for work in the country, be able to communicate in English, and take written examinations approved by the Federal Communications Commission. Like the amateur radio examinations, these are given by private, FCC-approved groups. These are generally not the same agencies who administer the ham tests. Written test elements 1 and 7 are required for the Operator license, and elements 1 and 7R for the Restricted Operator. For the Maintainer examination element 9 must be passed. However, to obtain this certificate an applicant must also hold a General radiotelephone operator license (GROL), which requires passing commercial written exam elements 1 and 3. Upon the further passing of optional element 8 the ship radar endorsement will then be added to both the GROL and Maintainer licenses. It should be noted that to actually serve as an operator on most commercial vessels the United States Coast Guard requires additional classroom training and practical experience.

 Learning tools

Many tools exist for teaching GMDSS skills, including various types of simulator. Simulators are very useful because sending false distress communications on live equipment is unsafe and illegal. A good simulator should faithfully reproduce conditions under which GMDSS systems would actually be used at sea. All of the questions and answers asked on the written tests are also available in commercially prepared books.

No comments: